Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0274153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098011

RESUMO

Innovation in ecological restoration is necessary to achieve the ambitious targets established in United Nations conventions and other global restoration initiatives. Innovation is also crucial for navigating uncertainties in repairing and restoring ecosystems, and thus practitioners often develop innovations at project design and implementation stages. However, innovation in ecological restoration can be hindered by many factors (e.g., time and budget constraints, and project complexity). Theory and research on innovation has been formally applied in many fields, yet explicit study of innovation in ecological restoration remains nascent. To assess the use of innovation in restoration projects, including its drivers and inhibitors, we conducted a social survey of restoration practitioners in the United States. Specifically, we assessed relationships between project-based innovation and traits of the individual practitioner (including, for example, age, gender, experience); company (including, for example, company size and company's inclusion of social goals); project (including, for example, complexity and uncertainty); and project outcomes (such as completing the project on time/on budget and personal satisfaction with the work). We found positive relationships between project-based innovation and practitioner traits (age, gender, experience, engagement with research scientists), one company trait (company's inclusion of social goals in their portfolio), and project traits (project complexity and length). In contrast, two practitioner traits, risk aversion and the use of industry-specific information, were negatively related to project-based innovation. Satisfaction with project outcomes was positively correlated with project-based innovation. Collectively, the results provide insights into the drivers and inhibitors of innovation in restoration and suggest opportunities for research and application.


Assuntos
Ecossistema , Objetivos , Estados Unidos , Incerteza
3.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400825

RESUMO

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Assuntos
Ecossistema , Objetivos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Humanos
4.
Ecol Appl ; 31(3): e2274, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617144

RESUMO

Warming-induced mountain pine beetle (Dendroctonus ponderosae; MPB) outbreaks have caused extensive mortality of whitebark pine (Pinus albicaulis; WBP) throughout the species' range. In the highest mountains where WBP occur, they cross alpine treeline ecotones (ATEs) where growth forms transition from trees to shrub-like krummholz, some of which survived recent MPB outbreaks. This observation motivated the hypothesis that ATEs are refugia for WBP because krummholz growth forms escape MPB attack and have the potential to produce viable seed. To test this hypothesis, we surveyed WBP mortality along transects from the ATE edge (locally highest krummholz WBP) downslope into the forest and, to distinguish if survival mechanisms are unique to ATEs, across other forest ecotones (OFEs) from the edge of WBP occurrence into the forest. We replicated this design at 10 randomly selected sites in the U.S. Northern Rocky Mountains. We also surveyed reproduction in a subset of ATE sites. Mortality was nearly absent in upper ATEs (mean ± SE percent dead across all sites of 0.03% ± 0.03% 0-100 m from the edge and 14.1% ± 1.7% 100-500 m from the edge) but was above 20% along OFEs (21.4 ± 5.2% 0-100 m and 32.4 ± 2.7% 100-500 m from the edge). We observed lower reproduction in upper ATEs (16 ± 9.9 cones/ha and 12.9 ± 5.3 viable seeds/cone 0-100 m from the edge) compared to forests below (317.1 ± 64.4 cones/ha and 32.5 ± 2.5 viable seeds/cone 100-500 m from the edge). Uniquely high WBP survival supports the hypothesis that ATEs serve as refugia because krummholz growth forms escape MPB attack. However, low reproduction suggests ATE refugia function over longer time periods. Beyond our WBP system, we propose that plant populations in marginal environments are candidate refugia if distinct phenotypes result in reduced disturbance impacts.


Assuntos
Besouros , Pinus , Animais , Surtos de Doenças , Casca de Planta , Refúgio de Vida Selvagem
5.
Bioscience ; 69(5): 379-388, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086421

RESUMO

Resilience has become a common goal for science-based natural resource management, particularly in the context of changing climate and disturbance regimes. Integrating varying perspectives and definitions of resilience is a complex and often unrecognized challenge to applying resilience concepts to social-ecological systems (SESs) management. Using wildfire as an example, we develop a framework to expose and separate two important dimensions of resilience: the inherent properties that maintain structure, function, or states of an SES and the human perceptions of desirable or valued components of an SES. In doing so, the framework distinguishes between value-free and human-derived, value-explicit dimensions of resilience. Four archetypal scenarios highlight that ecological resilience and human values do not always align and that recognizing and anticipating potential misalignment is critical for developing effective management goals. Our framework clarifies existing resilience theory, connects literature across disciplines, and facilitates use of the resilience concept in research and land-management applications.

6.
Ecol Appl ; 29(2): e01835, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30644139

RESUMO

Seed transfer zones, which define the geographical relationship between adaptive traits and environmental factors, are increasingly used to determine the source populations that can be combined in restoration and revegetation. Climatic variables have been the most commonly used environmental data in transfer zone development, even though soils are also a primary selective force on plants. We assessed the importance of including soils in seed transfer zones using Bromus marginatus, a native grass used for restoration and revegetation in the western United States, as an example. Seeds were collected from 64 populations across Montana and Idaho and grown in a common garden for two years. We assessed among-population variation based on 11 traits related to germination rate, plant size, vigor, inflorescence number, survival, and carbon isotope discrimination (∆13 ), and used this variation to develop seed transfer zone maps using two approaches: (1) a conventional approach, using only climatic variables (climate only) and (2) an expanded approach that included soils and climatic variables (soils + climate). The most influential drivers of trait variation were factors related to soil water availability: soil order, available water content (AWC), and organic carbon levels. Populations from areas with andic soils, which have high soil AWC and soil organic carbon, had low germination, limited first-year survival, low ∆13 , and small seeds. Growing season length and winter temperatures were also predictive of trait variation. In comparison to climate-only models, soils + climate models explained 11% more variance (120% relative increase) for ∆13 and an average of 4.5% more (27% relative increase) for growth traits and survival. The transfer zone map developed using soils + climate differed from the climate-only map in both spatial pattern of ecotypic variation and number of transfer zones; the soils + climate map had more zones and a higher proportion of small (<4 km2 ) transfer zone patches, while the climate-only map had more large patches >37 km2 . Including soils in transfer zone development may identify adaptive trait variation that is obscured by large-scale differences in climate and could improve plant materials used for ecosystem management.


Assuntos
Bromus , Solo , Ecossistema , Montana , Sementes
8.
Environ Manage ; 59(2): 338-353, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27848001

RESUMO

Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Agricultura Florestal/métodos , Florestas , Árvores , Comportamento Cooperativo , Tomada de Decisões , Ecologia , Estados Unidos
9.
Evol Appl ; 9(10): 1219-1228, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27877201

RESUMO

Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inform management decisions has not been formally evaluated. We assessed local adaptation literature for six key experimental methodologies that have the greatest effect on the application of research to selecting plant materials for natural resource management: experimental environment, response variables, maternal effects, intraspecific variation, selective agents, and spatial and temporal variability. We found that less than half of experiments used reciprocal transplants or natural field conditions, which are both informative for revegetation and restoration. Population growth rate was rarely (5%) assessed, and most studies measured only single generations (96%) and ran for less than a year. Emergence and establishment are limiting factors in successful revegetation and restoration, but the majority of studies measured later life-history stages (66%). Additionally, most studies included limited replication at the population and habitat levels and tested response to single abiotic selective factors (66%). Local adaptation research should be cautiously applied to management; future research could use alternative methodologies to allow managers to directly apply findings.

10.
Sci Adv ; 2(6): e1600026, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386570

RESUMO

Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.


Assuntos
Ecologia , Inundações , Sedimentos Geológicos , Camada de Gelo , Rios , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Geografia , Fenômenos Geológicos , Humanos
11.
Ecol Appl ; 25(6): 1478-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26552258

RESUMO

Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , Incêndios , Tempo (Meteorologia) , Monitoramento Ambiental/métodos , Estados Unidos
12.
Ecol Appl ; 21(2): 452-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563576

RESUMO

Accurate estimation of responses of understory plants to disturbance is essential for understanding the efficacy of management activities. However, the ability to assess changes in the abundance of plants may be hampered by inappropriate sampling methodologies. Conventional methods for sampling understory plants may be precise for common species but may fail to adequately characterize abundance of less common species. We tested conventional (modified Whittaker plots and Daubenmire and point-line intercept transects) and novel (strip adaptive cluster sampling [SACS]) approaches to sampling understory plants to determine their efficacy for quantifying abundance on control and thinned-and-burned treatment units in Pinus ponderosa forests in western Montana, USA. For species grouped by growth-form and for common species, all three conventional designs were capable of estimating cover with a 50% relative margin of error with reasonable sample sizes (3-36 replicates for growth-form groups; 8-14 replicates for common species); however, increasing precision to 25% relative margin of error required sample sizes that may be infeasible (11-143 replicates for growth-form groups; 28-54 replicates for common species). All three conventional designs required enormous sample sizes to estimate cover of nonnative species as a group (29-60 replicates) and of individual less common species (62-118 replicates), even with a 50% relative margin of error. SACS was the only design that efficiently sampled less common species, requiring only 6-11% as many replicates relative to conventional designs. Conventional designs may not be effective for estimating abundance of the majority of forest understory plants, which are typically patchily distributed with low abundance, or of newly establishing nonnative plants. Novel methods such as SACS should be considered in investigations when cover of these species is of concern.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Plantas/classificação , Animais , Densidade Demográfica
13.
Proc Natl Acad Sci U S A ; 106(26): 10706-11, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19506256

RESUMO

Because of increasing concern about the effects of catastrophic wildland fires throughout the western United States, federal land managers have been engaged in efforts to restore historical fire behavior and mitigate wildfire risk. During the last 5 years (2004-2008), 44,000 fuels treatments were implemented across the western United States under the National Fire Plan (NFP). We assessed the extent to which these treatments were conducted in and near the wildland-urban interface (WUI), where they would have the greatest potential to reduce fire risk in neighboring homes and communities. Although federal policies stipulate that significant resources should be invested in the WUI, we found that only 3% of the area treated was within the WUI, and another 8% was in an additional 2.5-km buffer around the WUI, totaling 11%. Only 17% of this buffered WUI is under federal ownership, which significantly limits the ability of federal agencies to implement fire-risk reduction treatments near communities. Although treatments far from the WUI may have some fire mitigation benefits, our findings suggest that greater priority must be given to locating treatments in and near the WUI, rather than in more remote settings, to satisfy NFP goals of reducing fire risk to communities. However, this may require shifting management and policy emphasis from public to private lands.


Assuntos
Planejamento em Desastres/métodos , Incêndios/prevenção & controle , Gestão de Riscos/métodos , Agricultura , Cidades , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Bases de Dados como Assunto , Planejamento em Desastres/economia , Ecossistema , Apoio Financeiro , Financiamento Governamental , Geografia , Fatores de Risco , Gestão de Riscos/economia , Estados Unidos
14.
Conserv Biol ; 23(4): 879-86, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19183215

RESUMO

Leadership is a critical tool for expanding the influence of conservation science, but recent advances in leadership concepts and practice remain underutilized by conservation scientists. Furthermore, an explicit conceptual foundation and definition of leadership in conservation science are not available in the literature. Here we drew on our diverse leadership experiences, our reading of leadership literature, and discussions with selected conservation science leaders to define conservation-science leadership, summarize an exploratory set of leadership principles that are applicable to conservation science, and recommend actions to expand leadership capacity among conservation scientists and practitioners. We define 2 types of conservation-science leadership: shaping conservation science through path-breaking research, and advancing the integration of conservation science into policy, management, and society at large. We focused on the second, integrative type of leadership because we believe it presents the greatest opportunity for improving conservation effectiveness. We identified 8 leadership principles derived mainly from the "adaptive leadership" literature: recognize the social dimension of the problem; cycle frequently through action and reflection; get and maintain attention; combine strengths of multiple leaders; extend your reach through networks of relationships; strategically time your effort; nurture productive conflict; and cultivate diversity. Conservation scientists and practitioners should strive to develop themselves as leaders, and the Society for Conservation Biology, conservation organizations, and academia should support this effort through professional development, mentoring, teaching, and research.


Assuntos
Conservação dos Recursos Naturais , Liderança
15.
Ecol Appl ; 18(3): 762-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18488633

RESUMO

Many historically fire-adapted forests are now highly susceptible to damage from insects, pathogens, and stand-replacing fires. As a result, managers are employing treatments to reduce fuel loadings and to restore the structure, species, and processes that characterized these forests prior to widespread fire suppression, logging, and grazing. However, the consequences of these activities for understory plant communities are not well understood. We examined the effects of thinning and prescribed fire on plant composition and diversity in Pinus ponderosa forests of eastern Washington (USA). Data on abundance and richness of native and nonnative plants were collected in 70 stands in the Colville, Okanogan, and Wenatchee National Forests. Stands represented one of four treatments: thinning, burning, thinning followed by burning, or control; treatments had been conducted 3-19 years before sampling. Multi-response permutation procedures revealed no significant effect of thinning or burning on understory plant composition. Similarly, there were no significant differences among treatments in cover or richness of native plants. In contrast, nonnative plants showed small, but highly significant, increases in cover and richness in response to both thinning and burning. In the combined treatment, cover of nonnative plants averaged 2% (5% of total plant cover) but did not exceed 7% (16% of total cover) at any site. Cover and richness of nonnative herbs showed small increases with intensity of disturbance and time since treatment. Nonnative plants were significantly less abundant in treated stands than on adjacent roadsides or skid trails, and cover within these potential source areas explained little of the variation in abundance within treated stands. Although thinning and burning may promote invasion of nonnative plants in these forests, our data suggest that their abundance is limited and relatively stable on most sites.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Incêndios , Desenvolvimento Vegetal , Plantas/classificação , Fatores de Tempo , Washington
16.
Ecology ; 88(11): 2880-90, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18051657

RESUMO

Clonal herbs that attain maximum development in late-seral forest are often assumed to have similar responses to disturbance and to be functionally equivalent. However, little is known about the demographic or physiological responses of these plants to disturbance or to the altered conditions of the post-disturbance environment. Following harvest of a mature coniferous forest, we compared abundance, demographic changes, and physiological acclimation of three clonal herbs (Asarum caudatum, Clintonia uniflora, and Pyrola picta) that differ in belowground morphology and leaf longevity. We measured ramet density, leaf area, and demographic variables (survival, clonal growth, flowering, and seedling establishment) before and for two years after harvest, and in adjacent undisturbed forest. Acclimation to increased solar radiation was assessed two years after harvest by measuring leaf mass per unit area (LMA) and chlorophyll a:b ratios of leaves produced in the current year. Although initial declines in abundance were similar, demographic responses indicate that patterns of recovery varied greatly among species. Two years after logging, ramet survival and clonal growth (production of new ramets) of Clintonia were greater in the harvest area than in the forest. Asarum had lower survival in the harvest area, but greater clonal growth, and Pyrola showed no difference in either survival or growth between environments. Only Asarum produced seedlings, although their survival was low in the harvest area. All species had higher LMA in the harvest area, but only Clintonia (with annual leaves) had a higher chlorophyll a:b ratio, suggesting the greatest potential for acclimation to increased light. Our results demonstrate that forest herbs with greater rhizome plasticity and shorter leaf duration have greater potential to acclimate after disturbance than those with rigid architectures and persistent leaves. Thus, species with comparable successional roles can vary substantially in their demographic and physiological responses to disturbance, with potential consequences for long-term recovery.


Assuntos
Adaptação Fisiológica , Asarum/fisiologia , Clorofila/análise , Meio Ambiente , Pyrola/fisiologia , Árvores/fisiologia , Aclimatação , Asarum/crescimento & desenvolvimento , Clorofila/metabolismo , Liliaceae/crescimento & desenvolvimento , Liliaceae/fisiologia , Fotossíntese/fisiologia , Folhas de Planta , Dinâmica Populacional , Crescimento Demográfico , Pyrola/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Luz Solar , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...